Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.946
Filtrar
1.
Curr Biol ; 34(4): R148-R150, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412825

RESUMO

There is mounting evidence that decision-making can be affected by treatment in Parkinson's disease. A new study shows that dopamine and deep brain stimulation, two mainstay treatments of Parkinson's, differently affect how patients make decisions weighing rewards against effort costs.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Tomada de Decisões/fisiologia , Dopamina/fisiologia , Recompensa
2.
Curr Opin Neurobiol ; 85: 102839, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309106

RESUMO

Striatal dopamine governs a wide range of behavioral functions, yet local dopamine concentrations can be dissociated from somatic activity. Here, we discuss how dopamine's diverse roles in behavior may be driven by local circuit mechanisms shaping dopamine release. We first look at historical and recent work demonstrating that striatal circuits interact with dopaminergic terminals to either initiate the release of dopamine or modulate the release of dopamine initiated by spiking in midbrain dopamine neurons, with particular attention to GABAergic and cholinergic local circuit mechanisms. Then we discuss some of the first in vivo studies of acetylcholine-dopamine interactions in striatum and broadly discuss necessary future work in understanding the roles of midbrain versus striatal dopamine regulation.


Assuntos
Corpo Estriado , Dopamina , Dopamina/fisiologia , Corpo Estriado/fisiologia , Acetilcolina , Neurônios Dopaminérgicos/fisiologia
3.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38253532

RESUMO

Disparities in socioeconomic status (SES) lead to unequal access to financial and social support. These disparities are believed to influence reward sensitivity, which in turn are hypothesized to shape how individuals respond to and pursue rewarding experiences. However, surprisingly little is known about how SES shapes reward sensitivity in adolescence. Here, we investigated how SES influenced adolescent responses to reward, both in behavior and the striatum-a brain region that is highly sensitive to reward. We examined responses to both immediate reward (tracked by phasic dopamine) and average reward rate fluctuations (tracked by tonic dopamine) as these distinct signals independently shape learning and motivation. Adolescents (n = 114; 12-14 years; 58 female) performed a gambling task during functional magnetic resonance imaging. We manipulated trial-by-trial reward and loss outcomes, leading to fluctuations between periods of reward scarcity and abundance. We found that a higher reward rate hastened behavioral responses, and increased guess switching, consistent with the idea that reward abundance increases response vigor and exploration. Moreover, immediate reward reinforced previously rewarding decisions (win-stay, lose-switch) and slowed responses (postreward pausing), particularly when rewards were scarce. Notably, lower-SES adolescents slowed down less after rare rewards than higher-SES adolescents. In the brain, striatal activations covaried with the average reward rate across time and showed greater activations during rewarding blocks. However, these striatal effects were diminished in lower-SES adolescents. These findings show that the striatum tracks reward rate fluctuations, which shape decisions and motivation. Moreover, lower SES appears to attenuate reward-driven behavioral and brain responses.


Assuntos
Corpo Estriado , Dopamina , Adolescente , Humanos , Feminino , Dopamina/fisiologia , Corpo Estriado/fisiologia , Motivação , Aprendizagem/fisiologia , Recompensa , Imageamento por Ressonância Magnética
4.
Neuron ; 112(6): 1001-1019.e6, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278147

RESUMO

Midbrain dopamine neurons are thought to signal reward prediction errors (RPEs), but the mechanisms underlying RPE computation, particularly the contributions of different neurotransmitters, remain poorly understood. Here, we used a genetically encoded glutamate sensor to examine the pattern of glutamate inputs to dopamine neurons in mice. We found that glutamate inputs exhibit virtually all of the characteristics of RPE rather than conveying a specific component of RPE computation, such as reward or expectation. Notably, whereas glutamate inputs were transiently inhibited by reward omission, they were excited by aversive stimuli. Opioid analgesics altered dopamine negative responses to aversive stimuli into more positive responses, whereas excitatory responses of glutamate inputs remained unchanged. Our findings uncover previously unknown synaptic mechanisms underlying RPE computations; dopamine responses are shaped by both synergistic and competitive interactions between glutamatergic and GABAergic inputs to dopamine neurons depending on valences, with competitive interactions playing a role in responses to aversive stimuli.


Assuntos
Neurônios Dopaminérgicos , Ácido Glutâmico , Camundongos , Animais , Neurônios Dopaminérgicos/fisiologia , Dopamina/fisiologia , Recompensa , Mesencéfalo , Área Tegmentar Ventral/fisiologia
5.
Neuroscience ; 539: 35-50, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38176609

RESUMO

Virgin and pups-naïve female and male adult mice display two opposite responses when they are exposed to pups for the first time. While females generally take care of the pups, males attack them. Since the nucleus accumbens (NA), and its dopaminergic modulation, is critical in integrating information and processing reward and aversion, we investigated if NMDA- and 6-OHDA-induced lesions, damaging mostly NA output and dopaminergic inputs respectively, affected female maternal behavior (MB) or male infanticidal behavior (IB) in mice. Our results revealed minor or no effects of both smaller and larger NMDA-induced lesions in MB and IB. On the other hand, while 6-OHDA-induced lesions in females reduced the incidence of full MB (12.5% 6-OHDA vs. 85.7% SHAM) increasing the latency to retrieve the pups, those lesions did not affect IB in males. There were no differences in locomotor and exploratory activity between the lesioned- and SHAM- females. Despite those lesions did not induce any major effect on IB, NMDA-lesioned males spent less time in the central area of an open field, while dopaminergic-lesioned males showed reduced number of rearing and peripheral crosses. The current study shows that an intact NA is not necessary for the expression of MB and IB. However, dopaminergic inputs to NA play different role in MB and IB. While damaging dopaminergic terminals into the NA did not affect IB, it clearly delayed the more flexible and rewarding expression of parental behavior.


Assuntos
N-Metilaspartato , Núcleo Accumbens , Camundongos , Animais , Feminino , Masculino , Humanos , Oxidopamina/toxicidade , N-Metilaspartato/farmacologia , Dopamina/fisiologia , Comportamento Materno/fisiologia
6.
Nat Neurosci ; 27(2): 286-297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216649

RESUMO

Dopamine is implicated in adaptive behavior through reward prediction error (RPE) signals that update value estimates. There is also accumulating evidence that animals in structured environments can use inference processes to facilitate behavioral flexibility. However, it is unclear how these two accounts of reward-guided decision-making should be integrated. Using a two-step task for mice, we show that dopamine reports RPEs using value information inferred from task structure knowledge, alongside information about reward rate and movement. Nonetheless, although rewards strongly influenced choices and dopamine activity, neither activating nor inhibiting dopamine neurons at trial outcome affected future choice. These data were recapitulated by a neural network model where cortex learned to track hidden task states by predicting observations, while basal ganglia learned values and actions via RPEs. This shows that the influence of rewards on choices can stem from dopamine-independent information they convey about the world's state, not the dopaminergic RPEs they produce.


Assuntos
Dopamina , Recompensa , Animais , Camundongos , Dopamina/fisiologia , Dopaminérgicos , Aprendizagem/fisiologia , Gânglios da Base
7.
Neuron ; 112(1): 4-6, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38176390

RESUMO

In this issue of Neuron, Wu et al.1 employ cutting-edge techniques to provide a mechanistic understanding of how sleep deprivation induces an altered affective state. They reveal a key function for dopaminergic signaling, and the formation of cortical spines, in this process.


Assuntos
Dopamina , Privação do Sono , Humanos , Dopamina/fisiologia , Neurônios/fisiologia
9.
Neuron ; 112(3): 458-472.e6, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38056455

RESUMO

Maladaptation in balancing internal energy needs and external threat cues may result in eating disorders. However, brain mechanisms underlying such maladaptations remain elusive. Here, we identified that the basal forebrain (BF) sends glutamatergic projections to glutamatergic neurons in the ventral tegmental area (VTA) in mice. Glutamatergic neurons in both regions displayed correlated responses to various stressors. Notably, in vivo manipulation of BF terminals in the VTA revealed that the glutamatergic BF → VTA circuit reduces appetite, increases locomotion, and elicits avoidance. Consistently, activation of VTA glutamatergic neurons reduced body weight, blunted food motivation, and caused hyperactivity with behavioral signs of anxiety, all hallmarks of typical anorexia symptoms. Importantly, activation of BF glutamatergic terminals in the VTA reduced dopamine release in the nucleus accumbens. Collectively, our results point to overactivation of the glutamatergic BF → VTA circuit as a potential cause of anorexia-like phenotypes involving reduced dopamine release.


Assuntos
Prosencéfalo Basal , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/fisiologia , Dopamina/fisiologia , Anorexia , Fenótipo , Neurônios Dopaminérgicos/fisiologia
10.
Neuron ; 112(3): 500-514.e5, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016471

RESUMO

Striatal dopamine (DA) release has long been linked to reward processing, but it remains controversial whether DA release reflects costs or benefits and how these signals vary with motivation. Here, we measure DA release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) while independently varying costs and benefits and apply behavioral economic principles to determine a mouse's level of motivation. We reveal that DA release in both structures incorporates both reward magnitude and sunk cost. Surprisingly, motivation was inversely correlated with reward-evoked DA release. Furthermore, optogenetically evoked DA release was also heavily dependent on sunk cost. Our results reconcile previous disparate findings by demonstrating that striatal DA release simultaneously encodes cost, benefit, and motivation but in distinct manners over different timescales. Future work will be necessary to determine whether the reduction in phasic DA release in highly motivated animals is due to changes in tonic DA levels.


Assuntos
Dopamina , Motivação , Camundongos , Animais , Dopamina/fisiologia , Corpo Estriado/fisiologia , Neostriado , Núcleo Accumbens/fisiologia , Recompensa
11.
Neurosci Res ; 199: 12-20, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37451506

RESUMO

Dopamine neurons have long been thought to facilitate learning by broadcasting reward prediction error (RPE), a teaching signal used in machine learning, but more recent work has advanced alternative models of dopamine's computational role. Here, I revisit this critical issue and review new experimental evidences that tighten the link between dopamine activity and RPE. First, I introduce the recent observation of a gradual backward shift of dopamine activity that had eluded researchers for over a decade. I also discuss several other findings, such as dopamine ramping, that were initially interpreted to conflict but later found to be consistent with RPE. These findings improve our understanding of neural computation in dopamine neurons.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Dopamina/fisiologia , Recompensa , Condicionamento Clássico
12.
Artigo em Inglês | MEDLINE | ID: mdl-38160852

RESUMO

BACKGROUND: Psychiatric disorders, such as schizophrenia, are complex and challenging to study, partly due to the lack of suitable animal models. However, the absence of the Slc10a4 gene, which codes for a monoaminergic and cholinergic associated vesicular transporter protein, in knockout mice (Slc10a4-/-), leads to the accumulation of extracellular dopamine. A major challenge for studying schizophrenia is the lack of suitable animal models that accurately represent the disorder. We sought to overcome this challenge by using Slc10a4-/- mice as a potential model, considering their altered dopamine levels. This makes them a potential animal model for schizophrenia, a disorder known to be associated with altered dopamine signaling in the brain. METHODS: The locomotion, auditory sensory filtering and prepulse inhibition (PPI) of Slc10a4-/- mice were quantified and compared to wildtype (WT) littermates. Intrahippocampal electrodes were used to record auditory event-related potentials (aERPs) for quantifying sensory filtering in response to paired-clicks. The channel above aERPs phase reversal was chosen for reliably comparing results between animals, and aERPs amplitude and latency of click responses were quantified. WT and Slc10a4-/- mice were also administered subanesthetic doses of ketamine to provoke psychomimetic behavior. RESULTS: Baseline locomotion during auditory stimulation was similar between Slc10a4-/- mice and WT littermates. In WT animals, normal auditory processing was observed after i.p saline injections, and it was maintained under the influence of 5 mg/kg ketamine, but disrupted by 20 mg/kg ketamine. On the other hand, Slc10a4-/- mice did not show significant differences between N40 S1 and S2 amplitude responses in saline or low dose ketamine treatment. Auditory gating was considered preserved since the second N40 peak was consistently suppressed, but with increased latency. The P80 component showed higher amplitude, with shorter S2 latency under saline and 5 mg/kg ketamine treatment in Slc10a4-/- mice, which was not observed in WT littermates. Prepulse inhibition was also decreased in Slc10a4-/- mice when the longer interstimulus interval of 100 ms was applied, compared to WT littermates. CONCLUSION: The Slc10a4-/- mice responses indicate that cholinergic and monoaminergic systems participate in the PPI magnitude, in the temporal coding (response latency) of the auditory sensory gating component N40, and in the amplitude of aERPs P80 component. These results suggest that Slc10a4-/- mice can be considered as potential models for neuropsychiatric conditions.


Assuntos
Dopamina , Ketamina , Animais , Humanos , Camundongos , Estimulação Acústica/métodos , Percepção Auditiva , Colinérgicos , Dopamina/fisiologia , Potenciais Evocados Auditivos/fisiologia , Filtro Sensorial
13.
Neuroimage ; 284: 120463, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989457

RESUMO

How to retrieve latent neurobehavioural processes from complex neurobiological signals is an important yet unresolved challenge. Here, we develop a novel approach, orthogonal-Decoding multi-Cognitive Processes (DeCoP), to reveal underlying latent neurobehavioural processing and show that its performance is superior to traditional non-orthogonal decoding in terms of both false inference and robustness. Processing value and salience information are two fundamental but mutually confounded pathways of reward reinforcement essential for decision making. During reward/punishment anticipation, we applied DeCoP to decode brain-wide responses into spatially overlapping, yet functionally independent, evaluation and readiness processes, which are modulated differentially by meso­limbic vs nigro-striatal dopamine systems. Using DeCoP, we further demonstrated that most brain regions only encoded abstract information but not the exact input, except for dorsal anterior cingulate cortex and insula. Furthermore, we anticipate our novel analytical principle to be applied generally in decoding multiple latent neurobehavioral processes and thus advance both the design and hypothesis testing for cognitive tasks.


Assuntos
Encéfalo , Recompensa , Humanos , Encéfalo/fisiologia , Reforço Psicológico , Mapeamento Encefálico , Dopamina/fisiologia , Imageamento por Ressonância Magnética
14.
Schizophr Res ; 262: 32-39, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922841

RESUMO

Schizophrenia is a neurodevelopmental psychiatric disorder that often emerges in adolescence, is characterized by social dysfunction, and has an earlier onset in men. These features have been replicated in rats exposed to the mitotoxin methylazoxymethanol acetate (MAM) on gestational day (GD) 17, which as adults exhibit behavioral impairments and dopamine (DA) system changes consistent with a schizophrenia-relevant rodent model. In humans, social withdrawal is a negative symptom that often precedes disease onset and DA system dysfunction and is more pronounced in men. Children and adolescents at high-risk for schizophrenia exhibit social deficits prior to psychotic symptoms (i.e., prodromal phase), which can be used as a predictive marker for future psychopathology. Adult MAM rats also exhibit deficient social interaction, but less is known regarding the emergence of social dysfunction in this model, whether it varies by sex, and whether it is linked to disrupted DA function. To this end, we characterized the ontogeny of social and DA dysfunction in male and female MAM rats during the prepubertal period (postnatal days 33-43) and found sex-specific changes in motivated social behaviors (play, approach) and DA function. Male MAM rats exhibited reduced social approach and increased VTA DA neuron activity compared to saline-treated (SAL) males, whereas female MAM rats exhibited enhanced play behaviors compared to SAL females but no changes in social approach or VTA population activity during this period. These findings demonstrate sex differences in the emergence of social and DA deficits in the MAM model, in which females exhibit delayed emergence.


Assuntos
Dopamina , Esquizofrenia , Humanos , Adolescente , Criança , Ratos , Masculino , Feminino , Animais , Dopamina/fisiologia , Esquizofrenia/induzido quimicamente , Roedores , Acetato de Metilazoximetanol/toxicidade , Neurônios , Modelos Animais de Doenças
15.
Elife ; 122023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37830916

RESUMO

Dopamine system dysfunction is implicated in adolescent-onset neuropsychiatric disorders. Although psychosis symptoms can be alleviated by antipsychotics, cognitive symptoms remain unresponsive and novel paradigms investigating the circuit substrates underlying cognitive deficits are critically needed. The frontal cortex and its dopaminergic input from the midbrain are implicated in cognitive functions and undergo maturational changes during adolescence. Here, we used mice carrying mutations in Arc or Disc1 to model mesofrontal dopamine circuit deficiencies and test circuit-based neurostimulation strategies to restore cognitive functions. We found that in a memory-guided spatial navigation task, frontal cortical neurons were activated coordinately at the decision-making point in wild-type but not Arc-/- mice. Chemogenetic stimulation of midbrain dopamine neurons or optogenetic stimulation of frontal cortical dopamine axons in a limited adolescent period consistently reversed genetic defects in mesofrontal innervation, task-coordinated neuronal activity, and memory-guided decision-making at adulthood. Furthermore, adolescent stimulation of dopamine neurons also reversed the same cognitive deficits in Disc1+/- mice. Our findings reveal common mesofrontal circuit alterations underlying the cognitive deficits caused by two different genes and demonstrate the feasibility of adolescent neurostimulation to reverse these circuit and behavioral deficits. These results may suggest developmental windows and circuit targets for treating cognitive deficits in neurodevelopmental disorders.


Assuntos
Antipsicóticos , Dopamina , Animais , Camundongos , Dopamina/fisiologia , Lobo Frontal , Cognição , Córtex Pré-Frontal/fisiologia , Proteínas do Tecido Nervoso
16.
Neuroimage ; 279: 120323, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37582419

RESUMO

Brain iron overload and decreased integrity of the dopaminergic system have been independently reported as brain substrates of cognitive decline in aging. Dopamine (DA), and iron are co-localized in high concentrations in the striatum and prefrontal cortex (PFC), but follow opposing age-related trajectories across the lifespan. DA contributes to cellular iron homeostasis and the activation of D1-like DA receptors (D1DR) alleviates oxidative stress-induced inflammatory responses, suggesting a mutual interaction between these two fundamental components. Still, a direct in-vivo study testing the iron-D1DR relationship and their interactions on brain function and cognition across the lifespan is rare. Using PET and MRI data from the DyNAMiC study (n=180, age=20-79, %50 female), we showed that elevated iron content was related to lower D1DRs in DLPFC, but not in striatum, suggesting that dopamine-rich regions are less susceptible to elevated iron. Critically, older individuals with elevated iron and lower D1DR exhibited less frontoparietal activations during the most demanding task, which in turn was related to poorer working-memory performance. Together, our findings suggest that the combination of elevated iron load and reduced D1DR contribute to disturbed PFC-related circuits in older age, and thus may be targeted as two modifiable factors for future intervention.


Assuntos
Dopamina , Memória de Curto Prazo , Feminino , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Dopamina/fisiologia , Memória de Curto Prazo/fisiologia , Longevidade , Ferro , Receptores de Dopamina D1/metabolismo , Córtex Pré-Frontal/fisiologia , Transtornos da Memória
17.
Hum Brain Mapp ; 44(15): 5125-5138, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37608591

RESUMO

While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by evaluating the spatial co-localization of regional alterations in blood oxygenation fluctuations with the distribution of adult dopaminergic neurotransmission. The study cohort comprised 99 very premature-born (<32 weeks of gestation and/or birth weight below 1500 g) and 107 full-term born young adults, being assessed by resting-state functional MRI (rs-fMRI) and IQ testing. Normative molecular imaging dopamine neurotransmission maps were derived from independent healthy control groups. We computed the co-localization of local (rs-fMRI) activity alterations in premature-born adults with respect to term-born individuals to different measures of dopaminergic neurotransmission. We performed selectivity analyses regarding other neuromodulatory systems and MRI measures. In addition, we tested if the strength of the co-localization is related to perinatal measures and IQ. We found selectively altered co-localization of rs-fMRI activity in the premature-born cohort with dopamine-2/3-receptor availability in premature-born adults. Alterations were specific for the dopaminergic system but not for the used MRI measure. The strength of the co-localization was negatively correlated with IQ. In line with animal studies, our findings support the notion of altered dopaminergic neurotransmission in prematurity which is associated with cognitive performance.


Assuntos
Cognição , Dopamina , Imageamento Dopaminérgico , Lactente Extremamente Prematuro , Nascimento Prematuro , Transmissão Sináptica , Dopamina/fisiologia , Nascimento Prematuro/diagnóstico por imagem , Nascimento Prematuro/psicologia , Humanos , Masculino , Feminino , Lactente , Adulto Jovem , Imageamento por Ressonância Magnética , Saturação de Oxigênio , Testes de Inteligência
18.
J Neurosci ; 43(41): 6909-6919, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648451

RESUMO

Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), show promise in treating a range of psychiatric and neurologic conditions. However, optimization of such applications requires a better understanding of how tDCS alters cognition and behavior. Existing evidence implicates dopamine in tDCS alterations of brain activity and plasticity; however, there is as yet no causal evidence for a role of dopamine in tDCS effects on cognition and behavior. Here, in a preregistered, double-blinded study, we examined how pharmacologically manipulating dopamine altered the effect of tDCS on the speed-accuracy trade-off, which taps ubiquitous strategic operations. Cathodal tDCS was delivered over the left prefrontal cortex and the superior medial frontal cortex before participants (N = 62, 24 males, 38 females) completed a dot-motion task, making judgments on the direction of a field of moving dots under instructions to emphasize speed, accuracy, or both. We leveraged computational modeling to uncover how our interventions altered latent decisional processes driving the speed-accuracy trade-off. We show that dopamine in combination with tDCS (but not tDCS alone nor dopamine alone) not only impaired decision accuracy but also impaired discriminability, which suggests that these manipulations altered the encoding or representation of discriminative evidence. This is, to the best of our knowledge, the first direct evidence implicating dopamine in the way tDCS affects cognition and behavior.SIGNIFICANCE STATEMENT tDCS can improve cognitive and behavioral impairments in clinical conditions; however, a better understanding of its mechanisms is required to optimize future clinical applications. Here, using a pharmacological approach to manipulate brain dopamine levels in healthy adults, we demonstrate a role for dopamine in the effects of tDCS in the speed-accuracy trade-off, a strategic cognitive process ubiquitous in many contexts. In doing so, we provide direct evidence implicating dopamine in the way tDCS affects cognition and behavior.


Assuntos
Dopamina , Estimulação Transcraniana por Corrente Contínua , Adulto , Masculino , Feminino , Humanos , Dopamina/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Cognição/fisiologia , Encéfalo , Córtex Pré-Frontal/fisiologia
19.
Neurosci Biobehav Rev ; 153: 105358, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597700

RESUMO

Memory is essential in defining our identity by guiding behavior based on past experiences. However, aging leads to declining memory, disrupting older adult's lives. Memories are encoded through experience-dependent modifications of synaptic strength, which are regulated by the catecholamines dopamine and noradrenaline. While cognitive aging research demonstrates how dopaminergic neuromodulation from the substantia nigra-ventral tegmental area regulates hippocampal synaptic plasticity and memory, recent findings indicate that the noradrenergic locus coeruleus sends denser inputs to the hippocampus. The locus coeruleus produces dopamine as biosynthetic precursor of noradrenaline, and releases both to modulate hippocampal plasticity and memory. Crucially, the locus coeruleus is also the first site to accumulate Alzheimer's-related abnormal tau and severely degenerates with disease development. New in-vivo assessments of locus coeruleus integrity reveal associations with Alzheimer's markers and late-life memory impairments, which likely stem from impaired dopaminergic and noradrenergic neurotransmission. Bridging research across species, the reviewed findings suggest that degeneration of the locus coeruleus results in deficient dopaminergic and noradrenergic modulation of hippocampal plasticity and thus memory decline.


Assuntos
Doença de Alzheimer , Dopamina , Humanos , Idoso , Dopamina/fisiologia , Locus Cerúleo/fisiologia , Norepinefrina/fisiologia , Envelhecimento , Memória de Longo Prazo
20.
Science ; 381(6657): eadg3916, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535717

RESUMO

Huang et al. (1) make an exciting claim about a human-like dopamine-regulated neuromodulatory mechanism underlying food-seeking behavior in honey bees. Their claim is based on experiments designed to measure brain biogenic amine levels and manipulate receptor activity. We have concerns that need to be addressed before broad acceptance of their results and the interpretation provided.


Assuntos
Abelhas , Dopamina , Comportamento Alimentar , Receptores Dopaminérgicos , Animais , Humanos , Abelhas/fisiologia , Encéfalo , Dopamina/fisiologia , Transdução de Sinais , Receptores Dopaminérgicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...